Human-Complete Problems

Occasionally, I manage to be clever when I am not even trying to be clever, which isn’t often. In a recent conversation about the new class of doomsday scenarios inspired by AlphaGo beating the Korean trash-talker Lee Sedol, I came up with the phrase human complete (HC) to characterize certain kinds of problems: the hardest problems of being human. An example of (what I hypothesize is) an HC problem is earning a living. I think human complete is a very clever phrase that people should use widely, and credit me for, since I can’t find other references to it. I suspect there may be money in it. Maybe even a good living. Here is a picture of the phrase that I will explain in a moment.

File Mar 31, 9 15 11 AM

In this post, I want to explore a particular bunny trail: the relationship between being human and the ability to solve infinite game problems in the sense of James Carse. I think this leads to an interesting perspective on the meaning and purpose of AI.

[Read more…]

Go Corporate or Go Home

If you’re in Silicon Valley, you might have missed the trend, but the percentage of American workers working for big companies has been increasing, even as corporate bureaucracy is getting more stifling. Strangely, this has been happening even as the companies issue press releases about being more flexible and adaptive, to compete with startups, as Paul Graham argues in his recent controversial essay on Refragmentation. But flexible seems to mean layoffs and reorgs into ever more complex and, yes, fragmented corporate structures. They aren’t slimming down into flexible startups.

Worse, startups scale into big companies, and transform into bureaucracies when they do. Harvard Business Review just came out with some advice on how to stop being a startup. Even startups can’t stay startups. Github, the catalyst for distributed software companies everywhere, is itself restructuring. As the author of this post on Github’s restructuring puts it, “Out with flat org structure based purely on meritocracy, in with supervisors and middle managers.” But why?

[Read more…]

Field Theory of Swords

I don’t mean to brag, but if you’ve been following this sequence of posts on ribbonfarm, then I’ve sort of taught you the secret to modern physics.

The secret goes like this:

Everything arises from fields, and fields arise from everything.

Go ahead.
You can indulge in a good eye-roll over the new-agey sound of that line.
(And over the braggadocio of the author.)

But eye-rolling aside, that line actually does refer to a very profound idea in physics. Namely, that the most fundamental object in nature is the field: a continuous, space-filling entity that has a simple mathematical structure and supports “undulations” or “ripples” that act like physical particles. (I offered a few ways to visualize fields in this post and this post.) To me, it is the most mind-blowing fact of modern physics that we call particles are really just “ripples” or “defects” on some infinite field.

But the miraculousness of fields isn’t just limited to fundamental particles. Fields also emerge at much higher levels of reality, as composite objects made from the motion of many active and jostling things. For example, one can talk about a “field” made from a large collection of electrons, atoms, molecules, cells, or even people. The “particles” in these fields are ripples or defects that move through the crowd. It is one of the miracles of science that essentially any sufficiently large group of interacting objects gives rise to simple collective excitations that behave like independent, free-moving particles.

Maybe this discussion seems excessively esoteric to you.  I can certainly understand that objection. But the truth is that the basic paradigm of particles and fields is so generic and so powerful that one can apply it to just about any level of nature.

So we might as well use it to talk about something awesome.

Let’s talk about swords.

[Read more…]

Artisanal Hand-Crafted Electrons

Warning:  This post is a spectator view of laboratory experiments by an experienced engineer, not a DIY guide. If you try experiments like this, you do so at your own risk. It is YOUR responsibility to employ proper shielding and safety measures, and to stay in compliance with your local safety laws.

Vacuum tubes. What are they good for today? Believe it or not, they are not exactly obsolete, and can be a more efficient solution than more modern components in some applications.

Where exactly? The first thing that comes to mind is that these are good for making sound.

To start, consider an old cathode-ray-tube (CRT) TV. The CRT needs a stable voltage in the tens of kilovolts range, or the picture would flicker in size from the changes of brightness. In the early days they used a tube-based linear regulator to make it stable. For that end there were special triodes that could withstand these voltages.


Their time didn’t last, since at 20-30 KV they were in the soft X-ray range and putting X-ray emitters into TVs is a bad idea. I suspect that’s where the myth about cacti absorbing radiation from monitors originated.

Anyway, let’s use such a triode as an arc modulator (plasma speaker) to make our own version of “tube sound”.

[Read more…]

Quasiparticles and the Miracle of Emergence

Let’s start with a big question: why does science work?

Writ large, science is the process of identifying and codifying the rules obeyed by nature. Beyond this general goal, however, science has essentially no specificity of topic.  It attempts to describe natural phenomena on all scales of space, time, and complexity: from atomic nuclei to galaxy clusters to humans themselves.  And the scientific enterprise has been so successful at each and every one of these scales that at this point its efficacy is essentially taken for granted.

But, by just about any a priori standard, the extent of science’s success is extremely surprising. After all, the human brain has a very limited capacity for complex thought. We human tend to think (consciously) only about simple things in simple terms, and we are quickly overwhelmed when asked to simultaneously keep track of multiple independent ideas or dependencies.

As an extreme example, consider that human thinking struggles to describe even individual atoms with real precision. How is it, then, that we can possibly have good science about things that are made up of many atoms, like magnets or tornadoes or eukaryotic cells or planets or animals? It seems like a miracle that the natural world can contain patterns and objects that lie within our understanding, because the individual constituents of those objects are usually far too complex for us to parse.

You can call this occurrence the “miracle of emergence”.  I don’t know how to explain its origin. To me, it is truly one of the deepest and most wondrous realities of the universe: that simplicity continuously emerges from the teeming of the complex.

But in this post I want to try and present the nature of this miracle in one of its cleanest and most essential forms. I’m going to talk about quasiparticles.

[Read more…]

Samuel Beckett’s Guide to Particles and Antiparticles

I was 12 years old when I first encountered this quote by Samuel Beckett:

“Every word is like an unnecessary stain on silence and nothingness.”

That quote impressed me quite a bit at the time. It appeared to my young self to be simultaneously profound, important, and impossible to understand. Now, nineteen years later, I’m still not sure I understand what Beckett meant by that short sentence. But I nonetheless find that its dark Zen has worked itself into me indelibly.

The Beckett quote comes to mind in particular as I sit down to write again about quantum field theory (QFT). QFT, to recap, is the science of describing particles, the most basic building blocks of matter. QFT concerns itself with how particles move, how they interact with each other, how they arise from nothingness, and how they disappear into nothingness again. As a framing idea or motif for QFT, I can’t resist presenting an adaptation of Beckett’s words as they might apply to the idea of particles and fields:

“Every particle is an unnecessary defect in a smooth and featureless field.”

Of course, it is not my intention to depress anyone with existential philosophy. But in this post I want to introduce, in a pictorial way, the idea of particles as defects. The discussion will allow me to draw some fun pictures, and also to touch on some deeper questions in physics like “what is the difference between matter and antimatter?”, “what is meant by rest mass energy?”, “what are fermions and bosons?”, and “why does the universe have matter instead of nothing?” [Read more…]

A Children’s Picture-book Introduction to Quantum Field Theory

First of all, don’t panic.

I’m going to try in this post to introduce you to quantum field theory, which is probably the deepest and most intimidating set of ideas in graduate-level theoretical physics.  But I’ll try to make this introduction in the gentlest and most palatable way I can think of: with simple-minded pictures and essentially no math.

To set the stage for this first lesson in quantum field theory, let’s imagine, for a moment, that you are a five-year-old child.  You, the child, are talking to an adult, who is giving you one of your first lessons in science.  Science, says the adult, is mostly a process of figuring out what things are made of.  Everything in the world is made from smaller pieces, and it can be exciting to find out what those pieces are and how they work.  A car, for example, is made from metal pieces that fit together in specially-designed ways.  A mountain is made from layers of rocks that were pushed up from inside the earth.  The earth itself is made from layers of rock and liquid metal surrounded by water and air.

This is an intoxicating idea: everything is made from something.

[Read more…]

Extraordinary Laboratories

Where it is actually used, a (not the) Scientific Method, which I’ll just refer to as a (big-M) Method, is used for scaling an instance of a small-s-small-m scientific method. One that achieved unreasonable traction with respect to a particular problem, suggesting hidden investigative potential: a Method-Mystery Fit (MMF), by analogy to the notion of a Product-Market Fit (PMF) in entrepreneurship. There is no canonical Scientific Method, just a plurality of scalable investigation processes that come and go with particular streams of discovery. When an investigative approach proves to be unreasonably effective, we scale it from method to Method. When we attempt scaling without MMF, we get the cargo cult process I called Science! (with exclamation point). You can tell the difference easily: true Methods are built around scientific instruments, not philosophical concepts. A class of instrument-makers emerges around a true Method. Telescopic observation is a Method. Some funding agency bureaucrat’s idea of “observation, hypothesis, experiment, theory” is not.

Science itself is a methodologically anarchic process, driven by a sensibility rather than a set of techniques. The aggregate of all currently fertile Methods constitute only a small part of all science. But the scaled Methods do share two features: a finite lifespan (there is no immortal Method that yields great discoveries for all eternity at a steady rate) and a deliberative element you could call “experiment design.”

[Read more…]

New Horizons

For a while now, I’ve been wanting to start a second track of weekly content on ribbonfarm, featuring short, dense pieces in text or visual form. I can’t think of a better way to kick that off than with an image more dense with significance than almost any image I’m likely to see in my lifetime.


In this one picture of Pluto, taken just ahead of the (now completed, with data streaming back) New Horizons flyby, is encapsulated a few centuries of telescopic astronomy, just over a century of flight, and just over half a century of spaceflight. This picture also marks an end and a beginning. Along with the Rosetta comet lander mission and the Dawn asteroid mission (which returned images of Ceres), New Horizons marks the tail end of a basic exploration of the solar system. At the same time, we are at the beginning of a serious exploration of the universe beyond, thanks to early 21st century planet hunters and the Kepler mission (an excellent summer read on the subject is Five Billion Years of Solitude by Lee Billings) and the upcoming Hubble replacement, the James Webb telescope.

We are exploring beyond new horizons and living once again in brave new times, where men are real men, women are real women, and small furry creatures from Alpha Centauri are real small furry creatures from Alpha Centauri.

A Neptune Kid, Waiting to Always-Already Know Pluto

If you’ve ever wondered what it means to always-already know something, you’re about to get a powerful demonstration, along with the rest of the planet. If all goes well with the NASA New Horizons mission, in a few weeks, you will always-already know what Pluto looks like. At crater-level detail.

As of June 29th, these low-detail teaser images of the Pluto-Charon system, based on the latest New Horizons update, are as good as it gets:



Savor the moment. Those born after around 2010 (I assume 5-year-olds are too young to appreciate the moment) will never know what it was like to not know what Pluto looks like. And those of us who do know will find it hard or impossible to re-experience that mental state of not knowing.

Moments like this, just before a significant collective mind-expansion, are rare. The last time we experienced something like this was in 1989, when Voyager 2 arrived at Neptune. That event changed my life.

[Read more…]